If it's not what You are looking for type in the equation solver your own equation and let us solve it.
c^2=41
We move all terms to the left:
c^2-(41)=0
a = 1; b = 0; c = -41;
Δ = b2-4ac
Δ = 02-4·1·(-41)
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{41}}{2*1}=\frac{0-2\sqrt{41}}{2} =-\frac{2\sqrt{41}}{2} =-\sqrt{41} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{41}}{2*1}=\frac{0+2\sqrt{41}}{2} =\frac{2\sqrt{41}}{2} =\sqrt{41} $
| 4+c=13 | | 12+3x=-15+6x | | (2/7)=(9/x) | | -s+10=5s-2 | | 14x-12=10x+12= | | -3(u+1)-2u=2(u+1) | | 6(2h)+3(h–4)= | | -3x+5(-7-2x)=-87 | | 130+6x+20=180 | | (a-27)+(a)=a+49 | | 63+30x=450 | | 50+(5x-10)=9x-8 | | x-10=3x12 | | 6j-2-9=-6+7j | | 2x14-9-17-14=7 | | -14=-9-c | | 3(2m+4)-4=8+6m | | 3(t+)-t=6 | | r/4-12=15 | | ×^2-7x=-12 | | -8.9-(9x-8)=−8.9−(9x−8)=-9.7x-(-1.2x+3) | | -4+3m=4m+6 | | 12+10x-16=20+4x | | -x-24=11-6x | | 5x-6=15+11x | | (3x=18) | | 7c=7c3 | | x-49=-6x+14 | | 2(7+4x)=3(2x-1) | | -1=3(n-1)+2(1-2n) | | -7.26=1.6-q | | -2-73x=10 |